首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   2篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2016年   2篇
  2013年   6篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1989年   1篇
排序方式: 共有43条查询结果,搜索用时 234 毫秒
1.
2.
Interspecific hybridization in the rodent genera Peromyscus and Mus results in abnormal placentation. In the Peromyscus interspecies hybrids, abnormal allelic interaction between an X-linked locus and the imprinted paternally expressed Peg3 locus was shown to cause the placental defects. In addition, loss-of-imprinting (LOI) of Peg3 was positively correlated with increased placental size. As in extreme cases this placental dysplasia constitutes a post-zygotic barrier against interspecies hybridization, this finding was the first direct proof that imprinted genes may be important in speciation and thus in evolution. In the Mus interspecies hybrids, a strong role of an X-linked locus in placental dysplasia has also been detected. However, here we show by backcross and allele specific expression analyses that neither LOI of Peg3 nor abnormal interactions between Peg3 and an X-linked locus are involved in generating placental dysplasia in Mus hybrids, although the placental phenotypes observed in the two genera seem to be identical. In contrast to this, another dysgenesis effect common to Peromyscus and Mus hybrids, altered foetal growth, is caused at least in part by the same X-chromosomal regions in both genera. These findings first underline the strong involvement of the X-chromosome in the genetics of speciation. Secondly, they indicate that disruption of epigenetic states, such as LOI, at specific loci may be involved in hybrid dysgenesis effects in one group, but not in another. Thus, we conclude that even in closely related groups divergent molecular mechanisms may be involved in the production of phenotypically similar post-zygotic barriers against hybridization.  相似文献   
3.
4.
胚外组织尤其是胎盘的正常发生对于维持哺乳动物胎儿在子宫中的发育和生长是必须的。胎盘发生是一个复杂的基因表达调控的过程,近年来的研究表明表观遗传在该过程中也起着重要作用。表观遗传调控在胎盘发生过程的几个主要事件中发挥作用,包括表观遗传对滋养层细胞分化和发育的调控、印记基因对胎盘发生和营养转运的调控、胎盘中的X染色体失活,以及胎盘表观遗传调控异常所导致的妊娠相关疾病。  相似文献   
5.
Abstract: The floral development of Whytockia W. W. Smith has been studied in order to explore the developmental basis for the arrangement and differentiation patterns of floral organs, and the evolutionary relationship between Whytockia and allies in floral development. The descending imbricate aestivations in both calyx and corolla have remarkably different ontogenetic patterns between calyx and corolla which are derivative with respect to the development of the valvate aestivations in the four-stamened Rhynchoglossum. Both corolla lobes and stamens are initiated simultaneously from the same ring meristem. However, the five stamens remarkably precede the initiation of the five corolla lobes. Also, the adaxial stamen is suppressed after initiation to become a staminode, concomitant with retardation of its adjacent organs during development. This situation, together with the non-acropetal order among whorls of floral organs in Whytockia, is possibly related to a late expression and a remarkably different expression pattern of cycloidea- like genes as compared to Antirrhinum. Furthermore, the axile placentation in the bilocular ovary of Whytockia is formed by an involute closure of carpels rather than derived from a secondary fusion of two intrusive parietal placentae.  相似文献   
6.
Brain growth is a key trait in the evolution of mammalian life history. Brain development should be mediated by placentation, which determines patterns of resource transfer from mothers to fetal offspring. Eutherian placentation varies in the extent to which a maternal barrier separates fetal tissues from maternal blood. We demonstrate here that more invasive forms of placentation are associated with substantially steeper brain-body allometry, faster prenatal brain growth and slower prenatal body growth. On the basis of the physiological literature we suggest a simple mechanism for these differences: in species with invasive placentation, where the placenta is bathed directly in maternal blood, fatty acids essential for brain development can be readily extracted by the fetus, but in species with less invasive placentation they must be synthesized by the fetus. Hence, with regard to brain-body allometry and prenatal growth patterns, eutherian mammals are structured into distinct groups differing in placental invasiveness.  相似文献   
7.
The ovary ofRutidea is bicarpellate and incompletely bilocular (septum between locules not continuous). A solitary campylotropous ovule, ascending from a basal placenta, occurs in each locule. Based on their orientation and degree of curving, three ovule types are distinguished. As a consequence of the abortion of one ovule, the drupaceous fruits are one-seeded. The incomplete septum allows the spherical seed to fill out the entire interior of the fruit. The seeds are deeply ruminate (Spigelia type). They grow very fast, producing folds and undulations (ruminations) which invade and totally occupy the second locule, almost enveloping the aborted ovule. Comparisons with otherRubiaceae (especiallyPavetteae), show that hemianatropy and campylotropy occur more often in theRubiaceae than hitherto accepted. The study corroborates the close affinity betweenRutidea andNichallea.  相似文献   
8.
Placental development is a complex and highly controlled process during which trophoblast stem cells differentiate to various trophoblast subtypes. The early embryonic death of systemic gene knockout models hampers the investigation of these genes that might play important roles during placentation. A trophoblast specific Cre mouse model would be of great help for dissecting out the potential roles of these genes during placental development. For this purpose, we generate a transgenic mouse with the Cre recombinase inserted into the endogenous locus of Elf5 gene that is expressed specifically in placental trophoblast cells. To analyze the specificity and efficiency of Cre recombinase activity in Elf5‐Cre mice, we mated Elf5‐Cre mice with Rosa26mT/mG reporter mice, and found that Elf5‐Cre transgene is expressed specifically in the trophoectoderm as early as embryonic day 4.5 (E4.5). By E12.5, the activity of Elf5‐Cre transgene was detected exclusively in all derivatives of trophoblast lineages, including spongiotrophoblast, giant cells, and labyrinth trophoblasts. In addition, Elf5‐Cre transgene was also active during spermatogenesis, from spermatids to mature sperms, which is consistent with the endogenous Elf5 expression in testis. Collectively, our results provide a unique tool to delete specific genes selectively and efficiently in trophoblast lineage during placentation.  相似文献   
9.
ABSTRACT

Trophoblast migration and invasion through the decidua and maternal uterine spiral arteries are crucial events in placentation. During this process, invasive trophoblast replace vascular endothelial cells as the uterine arteries are remodeled to form more permissive vessels that facilitate adequate blood flow to the growing fetus. Placentation failures resulting from either extensive or shallow trophoblastic invasion can cause pregnancy complications such as preeclampsia, intrauterine growth restriction, placenta creta, gestational trophoblastic disease and even maternal or fetal death. Consequently, the use of experimental animal models such as rats and mice has led to great progress in recent years with regards to the identification of mechanisms and factors that control trophoblast migration kinetics. This review aims to perform a comparative analysis of placentation and the mechanisms and factors that coordinate intrauterine trophoblast migration in humans, rats and mice under physiological and pathological conditions.  相似文献   
10.
Caveolae constitute membrane domains critical for the organization and synchronization of different signaling molecules related to numerous cell processes such as cell migration, invasion, and differentiation. Caveolin-1 (Cav-1) is the main integral membrane protein of these domains. Recently, it was found that a normal expression of aquaporin-3 (AQP3) is required for extravillous trophoblast (EVT) cell migration. Our aim was to investigate the role of caveolae in the migration, invasion, and endovascular differentiation of human EVT cells during placentation and its interaction with AQP3. EVT cells (Swan 71 cell line) were cultured in complete Dulbecco's modified Eagle's medium–nutrient mixture F12 and treated with 5 mM methyl-β-cyclodextrin (MβCD) to disrupt caveolae. We found that after MβCD treatment, Cav-1 protein was undetectable. In this condition, the ability of the cells to migrate was significantly decreased compared with the control cells, while no differences were observed in the number of invading cells and the metalloproteinases activity between control and MβCD-treated cells. Surprisingly, the disruption of caveolae significantly enhanced EVT endovascular differentiation. On the contrary, the silencing of AQP3, negatively affected tube-like formation. The theoretical analysis of the primary sequence of AQP3 protein revealed a putative Cav-1-binding site. In addition, immunoprecipitation and double immunofluorescence assays showed that AQP3 colocalized with Cav-1. These results showed that during placentation an intact caveola in EVT cells may be necessary for AQP3 and Cav-1 interaction and any perturbations might result in serious pregnancy disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号